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Abstract

Swimming in nature achieves remarkable performance through diverse morpholog-
ical adaptations and intricate solid-fluid interaction, yet exploring this capability
in artificial soft swimmers remains challenging due to the high-dimensional con-
trol complexity and the computational cost of resolving hydrodynamic details.
Traditional approaches often rely on morphology-dependent heuristics and simpli-
fied fluid models, which constrain exploration and preclude advanced strategies
like vortex exploitation. To address this, we propose an automated framework
that combines a unified, reduced-mode control space with a high-fidelity GPU-
accelerated simulator. Our control space naturally captures deformation patterns for
diverse morphologies, minimizing manual design, while our simulator efficiently
resolves the crucial fluid-structure interactions required for learning. We evaluate
our method on a wide range of morphologies, from bio-inspired to unconven-
tional. From this general framework, high-performance swimming patterns emerge
that qualitatively reproduce canonical gaits observed in nature without requiring
domain-specific priors,where state-of-the-art baselines often fail, particularly on
complex topologies like a torus. Our work lays a foundation for future opportunities
in automated co-design of soft robots in complex hydrodynamic environments.

1 Introduction

Underwater swimming exemplifies nature’s ability to generate versatile movement strategies through
free-form morphological adaptations—from the traveling waves of eel-like swimmers to the jet
propulsion of cephalopods (Dickinson et al., 2000; Hinch et al., 2012). This diversity in soft-body
organisms demonstrates how complex yet efficient control emerges from the interplay between
body deformations and fluid dynamics, offering inspiration for bioinspired robotics and adaptive
underwater systems. However, exploring such capabilities in artificial free-form soft swimmers poses
two challenges. First, unlike articulated rigid-body robots with standardized joint-torque actuation,
soft bodies require high-dimensional control policies to coordinate continuum deformations across
arbitrary morphologies, lacking a unified control paradigm. Second, learning these policies demands
physically-grounded simulations that balance computational efficiency with hydrodynamic fidelity—a
tradeoff often skewed toward speed in existing frameworks. As a result, current approaches typically
resort to morphology-dependent heuristics, e.g., predefined muscle layouts (Min et al., 2019; Ma
et al., 2021) or voxel-aligned contractions (Bhatia et al., 2021), which require fine tuning and
restrict exploration of control space. Furthermore, although recent simulation environments (Wang
et al., 2023a; Xian et al., 2023) enable data-driven control through simplified fluid models, these
approximations omit critical hydrodynamic phenomena like vortex shedding—limiting the discovery
of efficient gaits observed in biological swimmers.
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To address the limitations of domain-expert, morphology-dependent actuation design, we present a
unified control framework that automates both deformation space construction and policy learning
for free-form soft swimmers. Our approach is grounded in a key biological insight (Zhang et al.,
2022): natural swimmers exploit spatially low-frequency deformation modes to interact efficiently
with fluids, rather than activating the infinitely many degrees of freedom in its soft body. Inspired
by this, we introduce morphology-agnostic reduced modes, which compactly encode dominant
deformation patterns across arbitrary morphologies with a few parameters. We first leverage geodesic
farthest-point sampling to distribute control points adaptively over the swimmer’s body. Coupled with
linear blend skinning (LBS), these points define a deformation basis that interpolates coarse motions
across the entire body . We propose a dynamics correction process to further adjust deformations to
physically plausible configurations while preserving kinematic intent. This approach also ensures
motions are entirely driven by internal forces, avoiding unphysical momentum injection.

To address the accuracy-efficiency tradeoff of existing simulation environments, we develop a GPU-
accelerated simulator tailored for learning swimming strategy, ensuring both hydrodynamic fidelity
and computational efficiency required for reinforcement learning (RL). Our simulator integrates the
Lattice Boltzmann Method (HOME-LBM by Li et al., 2023) for fluid dynamics, for its inherent
parallelism and physical plausibility. The soft swimmers are modeled as finite elements in order to
express different morphologies freely, integrated with the state-of-the-art GPU solver (Chen et al.,
2024). We incorporate a two-way coupling framework, ensuring that body deformations dynamically
interact with fluid—a mechanism essential for thrust generation. Our simulator supports training
policies on a 128× 128× 512 grid in only a few hours, successfully reproducing physically plausible
swimming phenomena.

We evaluate our framework on a diverse set of 3D soft swimmer morphologies, from bio-inspired fish
to unconventional morphologies (Fig. 2), demonstrating universal applicability. Our method achieves
observable movement patterns in the majority of tested models in forward swimming task, surpassing
the state-of-the-art baselines—expert-design, clustering-based and differentiable controllers (Wang
et al., 2023a) by 50%. Notably, our method succeeds on unconventional morphologies where base-
lines struggle to find effective swimming strategy. Furthermore, it learns sophisticated behaviors
like vortex exploitation, which simplified fluid models cannot capture. From this general framework,
gaits corresponding to canonical biological swimming strategies (e.g., undulation, oscillation, pulsa-
tion) emerge automatically without prior kinematic assumptions, establishing a robust pipeline for
automated soft swimmer control.

In summary, our work presents the following contributions:

1. We introduce a unified, reduced mode control framework for free-form soft swimmers that
automates policy learning across various morphologies. Our approach eliminates human
priors while preserving deformation expressiveness.

2. We present a GPU-accelerated simulator optimized for learning soft-body swimming strate-
gies, enabling efficient RL training while resolving hydrodynamic phenomena critical to
swimming.

3. Our experiments demonstrate state-of-the-art swimming performance over prior works
across a diverse set of morphologies.

2 Related Work

Unified control for diverse morphologies Many studies on the robot design aim at optimizing
general control model for different input strcutures. Some works are based on articulated rigid bodies
due to their simplicity, including Zhao et al. (2020); Gupta et al. (2022); Lu et al. (2025). However,
the restriction of degrees of freedom (DoFs) of rigid bodies inhibits them from encoding high-DoF
motions. On the other hand, many works turn to soft body design instead, including Bhatia et al.
(2021) using mass-spring method and Hu et al. (2019); Wang et al. (2023a,c); Spielberg et al. (2019)
using material point method (MPM). Besides, there are other soft-body works based on reduced
modes (Zhang et al., 2017; Liang et al., 2023; Barbic and James, 2005) and finite element method
(FEM) (Ma et al., 2021; Du et al., 2021; Geilinger et al., 2019; Tan et al., 2012). Leveraging the
advantage of efficiency in rigid bodies and flexibility in soft bodies, some studies (Liu et al., 2022; Xu
et al., 2022; Xu, 2019; Wang et al., 2019; Li et al., 2024) combine these two representations to form
a bone-flesh structure. However, these works focus on actuating soft bodies by rigid link, limiting
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their control to the underlying rigid joints. The task of optimizing a unified control for soft robot
with free structure is still worth exploring. Moreover, most work in this field focuses on terrestrial
robot locomotion, and their extension to swimmers is unobvious and non-trivial due to the high
computational costs in fluids simulation and the coupling between fluids and solids.

Robot-learning environments There has recently been an increasing interest in and demand for
physics-based learning environments in artificial intelligence and robotics research. Most works
(Makoviychuk et al., 2021; Xiang et al., 2020; Todorov et al., 2012; Coumans, 2015; Graule et al.,
2022; Huang et al., 2021) focus on high-performance learning environments for simulating and
controlling rigid or soft robots alone. Among these work, efforts in building learning environments
for fluids are less common due to the computational cost of solving physics-based fluids and solid-
fluid interactions. Most existing works (Min et al., 2019; Ma et al., 2018; Ren et al., 2022) build
elastic swimmers with biomimetic actuators in simplified fluids and learns their swimming skills
with deep RL (Min et al., 2019) or differentiable simulation (Ma et al., 2021). As these simplified
fluid models overlook fluid properties (e.g., vorticity and incompressibility) and two-way elastic-fluid
coupling, learning advanced swimming skills like jellyfish pulsation and handling multiple swimmers
are intrinsically difficult (Min et al., 2019) in these works. There are some works involving the
simulation of flow field, including Liu et al. (2022); Wang et al. (2023b); Ma et al. (2021); Holl and
Thuerey (2024); Xian et al. (2023), but they either do not support fluid-elastic coupling or suffer from
sticking artifacts, which limits their capability of modeling diverse and flexible swimming robots.

Aquatic animal locomotion Animal swimming has long been an intriguing research topic in
biology (Dickinson et al., 2000; Hinch et al., 2012) and mechanics (Zhang et al., 2022; Lauder, 2015;
Costello et al., 2021). Previous works have identified several distinctive swimming skills commonly
shared by aquatic animals which can be divided into three mainstream underwater swimming skills
– undulation, oscillation, pulsation – which our pipeline can all automatically discover from their
representative swimmers’ morphologies.

3 Swimmer Modeling

Following the body-brain paradigm (Lipson and Pollack, 2000), we model swimmers through two
synergistic components: shape (morphology representation) and controller (deformation policy).

3.1 Shape Modeling

We represent the geometry of free-form soft swimmers using a volumetric mesh M := {X,E}
defined by its rest-shape vertices X ∈ Rdn and E its volumetric element structure, where d ∈ {2, 3}
is the dimension of space. We also define the deformed vertices as x(t) ∈ Rdn and the nodal
displacements as u(t) = x(t) −X, where t denote the time. This formulation generalizes across
2D, 3D. While our main results focus on 3D tetrahedral meshes, more 2D results are included in the
supplementary materials.

3.2 Controller Modeling

Soft body control can generally be categorized into external and internal approaches. External
approaches apply forces directly to the body. While simple to implement, they often violate mo-
mentum conservation and tend to drag the body toward the target rather than generating propulsion
through fluid interaction. Internal approaches generate forces by specifying muscle fibers within
the soft body, preserving momentum and offering more physically realistic behavior. However,
existing methods typically define these muscle fibers either manually by domain experts or through
morphology-dependent heuristics. As a result, they suffer from limited control expressiveness, low
automation, and poor generalization across diverse body designs. We propose a novel internal con-
troller that automatically modulates the entire rest shape X of the soft swimmer, ensuring momentum
conservation and morphology-agnostic control.

Kinematic displacement field In order to obtain efficient control across varying mesh resolutions
and diverse morphologies, we adopt reduced modes defined by linear blend skinning (LBS) as a
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Figure 1: We use a deformable square bar to illustrate our reduced mode control space. Two LBS
control points, p1 and p2, are leveraged to generate motions in this example. (a) Upper left shows the
normalized weights distributed on the bar, and w1 and w2 are the weights of p1 and p2 respectively.
(b) The deformed green mesh (left) is generated by applying vertex-wise weighted combinations
of rotations R and translations t from control points p1 and p2, with weights w1 and w2. The red
region indicates the self-inverted elements. Right figure shows the mesh with dynamic correction. (c)
Deformation patterns generated by different distributions of control parameters.

compact, low-dimensional control space. We first modify the rest shape by kinematically proposed
displacements uk constructed through reduced modes derived from geodesic control points.

We sample m control points pi via farthest-point sampling on rest-shape vertices X with geodesic
distance, which takes into account the mesh’s topology and reflects the shortest path in the volume of
the mesh. We compute uk using LBS:

uk =

m∑
i=1

wi(||X− pi||geo)(Rixk + ti − xk) (1)

where Ri and ti are learnable rotation and translation modes defined on pi and wi(||X−pi||geo) are
radial basis functions in geodesic distance (Fig. 1, a) that assign higher weights to points closer to pi,
producing smooth, spatially localized blending (see ablation studies in supplementary for details).
The weights are normalized on each vertex. This formulation enables resolution-independent control
of free-form deformations with only 6m degrees of freedom defined on pi (3m for rotation and 3m
for translation).

Dynamic correction While uk provides expressive shape changes, it may introduce inverted
elements as the LBS formulation ignores the mesh’s volumetric integrity (Fig. 1, b left). Inspired by
complementary dynamics (Zhang et al., 2020), we compute a correction u∗

d by solving a perturbation
ud from the following energy minimization problem:

u∗
d = argmin

ud

Ψ(X+ uk + ud) +
1

2
k||ud||22 (2)

where Ψ is the hyperelastic potential encoding internal forces (see Sec. 4.1), and k is a stiffness
coefficient that determines the extend of preserving the original deformation modes. This correction
projects the kinematically proposed displacement uk onto the manifold of dynamically feasible
configurations (Fig. 1, b right), while retaining most of the kinematic deformation modes. The total
rest shape deformation u = uk + u∗

d consists of both the kinematically proposed displacements and
dynamic correction.

Control space properties Compared to previous methods that offer only limited or non-physically
plausible actuation, the combined displacement field u satisfies three critical requirements: (1)
Intrinsic actuation via rest-shape modulation avoids external momentum injection; (2) Generality
across arbitrary mesh topologies through geodesic sampling; and (3) Compact dimensionality with
6m parameters (m ≪ n) achieved through LBS control points enabling efficient RL training. As
shown in Fig. 1 c, varying coefficients generates diverse rest-shape changes while maintaining
dynamical plausibility.
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4 Swimming Simulation

Efficient underwater locomotion involves rich, dynamic interaction with the surrounding fluid,
manifesting in complex flow phenomena such as vortex shedding, wake capture and reverse Kármán
vortex streets. Accurately capturing these effects requires a simulation framework that balances
physical fidelity and computational efficiency. Prior work often relies on simplified fluid or coupling
models, limiting the expressiveness of swimmer dynamics. We address this limitation by integrating
state-of-the-art fluid and solid solvers with a GPU-accelerated, two-way coupling scheme.

4.1 Elastic Simulation

Given discrete volumetric mesh representation of the soft body, deformed nodal positions x is
governed by the following Cauchy momentum equation after spatial discretization:

Mẍ+∇Ψ(x) = fext, (3)
where M ∈ R3n×3n is the mass matrix, Ψ is the strain energy, and fext is the total external force. We
discretize time with standard implicit Euler integration to calculate the updated x′ from the current
positions x and velocity v over a time step ∆t, by iteratively minimizing the incremental potential at
each step (Gast et al., 2015):

min
x′

1

2∆t2
(x′ − y)⊤M(x′ − y) + Ψ(x′), (4)

where y is the inertia term y = x+∆tv +∆t2M−1fext, a constant computed at the beginning of
the time step. We utilizes the state-of-the-art GPU-accelerated solvers dedicated to elastics (Chen
et al., 2024) to improve computational efficiency.

4.2 Fluid Simulation

We consider the lattice Boltzmann (LBM) method as our fluid simulator because it allows for explicit
computation of updates. Fluid dynamics can be evolved by a mesoscopic distribution function
f(v,x, t), which describes the probability of finding a particle at position x with velocity v at time
t. The macroscopic quantity of fluid such as density ρ and velocity v can be derived from f . LBM
evolves fluid behavior by tracking distribution functions f at discrete lattice nodes on a Cartesian
grid (128× 128× 512). The time integration proceeds through a collision–streaming scheme:

fi(x+ ci∆t, t+∆t) = fi(x, t) + Ωi(f), (5)
where fi is the distribution function for lattice direction ci, and Ωi is the collision operator which
relaxes the distribution function towards a local thermodynamic equilibrium state.

The explicit nature of LBM’s update rule enables massively parallel computation on Cartesian
grids. Each lattice node’s state is updated independently, minimizing synchronization overhead and
maximizing GPU utilization. Our simulator adopts high-order moment-encoded LBM (Li et al.,
2023) which achieve higher computational efficiency using less memory, while ensuring the accuracy
of fluid details.

4.3 Elastic-Fluid Coupling

We adopt a weak two-way coupling strategy that alternately updates the fluid and solid at each time
step. Compared with other coupling scheme (e.g. strong coupling), it well balances stability and
efficiency in the context of learning soft-body swimming controller. The solid influences the fluid
through boundary conditions, while the fluid applies pressure forces back onto the solid, which are
numerically estimated over the interface. To address the computational challenges posed by extensive
fluid-solid interactions, We further develop a fully parallelized intersection detection method that
exploits parallelism across both boundary elements and all lattice directions, resulting in significant
performance gains. More details are present in Supplementary.

5 Swimming-Skill Learning

Building upon the reduced-mode control space and high-fidelity fluid-structure coupling, we now
formulate the learning task to enable free-form soft swimmers to acquire locomotion skills. Our
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framework translates the physical simulator’s dynamics into an RL problem, where the agent must
discover deformation policies that exploit hydrodynamic interactions to generate thrust.

Task modeling and policy training. We model the task as a Markov decision process (MDP) with
a state space S and an action space A. We adopt the standard multi-layer perceptron (MLP) network
controller to map the state of a swimmer to actions applied to its actuators. Our simulator serves as
the transition function in this MDP that evolves the current state-action pair (s,a) to the new state s′

after one simulation frame. Each task contains a reward function R(s,a, s′) and aims to maximize
its discount accumulation in time (Sutton, 2018)

∑
i=0 γ

iRi, where Ri = R(si,ai, si+1) stands for
the reward collected in the i-th simulation frame. We train all tasks with the soft actor-critic (SAC)
method (Haarnoja et al., 2018), a widely adopted deep reinforcement learning (DRL) method known
for its stability, sample efficiency, and ability to handle continuous action spaces effectively.

Unified state representation. Designing an effective state representation for soft swimmers poses
unique challenges: (1) their high-dimensional deformations preclude exhaustive state encoding; (2)
morphological diversity demands topology-agnostic observations to avoid case-by-case engineering.
To address these, we design a morphology-robust state space s defined as

s = {xlocal,vlocal,vmean,d, l,alast}, (6)

which includes the local positions xlocal and velocities vlocal of a set of sample points on the model,
the average velocity of all vertices vmean, the direction d, distance to the target position l and the
action of the last step alast for a typical smooth term (see below). In our implementation, we take
the LBS control points as sample points directly. At each step, we treat the current sample points
as a point cloud and solve the Procrustes problem (Solomon, 2015) to obtain closest rotation and
translation from its original pose. The positions, velocities and target direction are then transformed
into this local coordinate frame to more effectively capture the local deformation patterns of the soft
swimmer and ensure the learned policy is rotation- and translation-invariant by construction.

Action. Leveraging our novel soft-body control representation, we query an action vector a ∈ R6m

at each control step, where m is the number of LBS control points (Sec. 3.2). Each control point has 6
degrees of freedom—3 for translation and 3 for rotation—within bounded ranges to ensure plausible
motion. The number of control points can be fixed or manually specified, enabling resolution-
independent control.

Reward. Since we use LBS control points and the weights are normalized on each vertex, the
mapping from the action space to the deformation space is not injective but exhibits some redundancy.
For instance, when all the control points take the same action of rotation and translation, there is no
actual actuation applied to the model because of the unchanged rest shape. Therefore, we employ a
penalty term in the reward to restrict the redundant degrees of freedom in action space. A typical
smooth term is also added. The reward is defined as

R = Rtask + λsmoothpsmooth + λregpreg,

Rtask = vmean · d,
psmooth = −||a− alast||22/(6m),

preg = −||a||22/(6m).

(7)

It consists of three components: a task-specific term, a smoothness term that encourages natural
actions, and a regularization term that penalizes redundant actions. The task-specific terms of reward
Rtask is the dot product of velocity and the direction to target. See supplementary for details.

Locomotion Tasks. Our primary evaluation focuses on the forward swimming task in 3D. To
further probe the versatility of our framework, we also introduce three advanced tasks evaluated on a
2D swimmer: target navigation, energy-efficient locomotion, and station-keeping against a persistent
fluid flow. The detailed setup and results for these tasks are presented in the supplementary material,
demonstrating the framework’s adaptability to diverse objectives.
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Figure 2: A collection of swimmer morphologies used in our experiments. The top six are bionic
morphologies, while the bottom six are abstract morphologies with unconventional topologies.

6 Results

6.1 Experimental Setup

Dataset We construct a novel collection of 12 soft swimmer morphologies (Fig. 2), including 6
bio-inspired and 6 abstract morphologies (non-biological shapes with synthetic topology). The bio-
inspired morphologies cover representative swimming mechanisms implemented by aquatic animals
after millions of years of evolution in nature: eel-like undulation, octopus-like oscillation, and
jellyfish-like pulsation. The abstract morphologies are deliberately designed to test the framework’s
ability in unconventional swimming scenarios beyond biological templates—scenarios where effective
deformation patterns may not exist. These morphologies intentionally lack obvious deformation
pathways for propulsion, forcing the controller to discover novel fluid-structure interaction strategies
through exploration. All meshes are normalized to the same scale and tetrahedralized by fTetWild (Hu
et al., 2020), comprising 400 to 1,500 vertices and 1,000 to 6,000 finite elements.

Baselines We evaluate our method against three baselines:

Domain-expert controller. Following expert-designed templates (Lin et al., 2019), we implement
manually tuned actuators for well-understood morphologies—axial muscles for clownfish and circular
muscles for jellyfish. We directly transfer the clownfish’s muscle design to the eel since they are
geometrically analogous. For the torus, we apply four segments of tangential-direction muscles
following the actuation approach outlined in DiffPD (Du et al., 2021) for terrestrial environments.

Clustering-based controller. DiffuseBot/SoftZoo (Wang et al., 2023c,a) are two state-of-the-art
approaches in soft swimmer control, so we adopt their clustering-based method as one of the SOTA
baselines. Following the approach, we segment swimmers into user-defined body regions via K-
means clustering on centers of finite elements and then use principal component analysis (PCA) to
extract dominant deformation directions for each region to define muscle orientations.

Differentiable controller. We test SoftZoo’s controller design in their open-sourced pipeline (Wang
et al., 2023a). For comprehensive comparison, we adapt the framework by freezing morphology
and material properties to isolate actuator optimization effects. However, this baseline faces critical
technical limitations in our experimental setting: (1) its differentiable MPM simulation becomes
numerically unstable beyond 3 seconds of simulated time (compared with 15 seconds in our task),
causing gradient explosions that prevent policy convergence; (2) It fails to achieve 128× 128× 512
spatial resolution due to memory constraints. These two factors prevent the baseline from completing
all 12 tasks under our temporal and spatial settings. We therefore exclude it from quantitative
comparisons. Qualitative results in the supplementary show that its learned policies tend to repeat
similar stretching patterns with limited diversity.

More details for all baselines are provided in our supplementary materials.

6.2 Quantitative Results

As shown in Tbl. 1, our method outperforms baseline controllers across most morphologies in the
forward-swimming task. Performances are evaluated by rewards reflecting swimming distance.
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Table 1: Normalized reward (mean ± std over 5 trials) for the forward swimming task. Bold indicates
the best performance per morphology; grayed entries denote controllers failing to make a visible
movement (< 0.3).

Method Model
Clownfish Eel Octopus Leaf Turtle Jellyfish

Domain-expert 11.96 ± 0.10 0.17± 0.06 - - - 18.85± 0.42
Clustering-based −1.12± 0.22 13.2 ± 1.0 0.15± 0.05 1.78 ± 0.07 −1.18± 0.16 0.87± 0.13

Ours 10.34± 0.42 6.26± 1.18 −0.03± 0.03 0.88± 0.29 8.67 ± 0.94 23.43 ± 1.14

Torus Eight Spiral Trumpet Tube Enneper

Domain-expert −0.31± 0.31 - - - - -
Clustering-based −0.07± 0.01 −0.04± 0.01 −0.13± 0.02 0.16± 0.05 1.02± 0.56 0.20± 0.03

Ours 15.05 ± 1.27 3.99 ± 0.43 3.20 ± 0.37 −0.16± 0.22 3.99 ± 1.24 12.33 ± 1.02

Domain-expert designed muscle templates (Fig. 3 bottom two rows) perform well on bio-inspired
shapes like the clownfish, achieving up to 115% of our method’s performance due to their well-
understood swimming patterns. However, this advantage quickly deteriorates on eel (3%), which is
geometrically similar but different in proportion of its parts, revealing high sensitivity to geometric
changes. Moreover, muscle templates originally optimized for terrestrial locomotion (e.g., torus)
exhibit poor transferability underwater (fails), highlighting the limits of human intuition.

The clustering-based controllers implemented by one of the SOTA methods in soft swimmer learning
fails to produce effective gaits for 8 out of 12 morphologies, and breaks down entirely on abstract
shapes, often resulting in unstable oscillations or nearly motionless poses. This is because the cluster-
ing method restricts deformations to the principal axes of precomputed muscle fibers, insufficient to
produce extensive fluid interaction necessary for effective swimming.

In contrast, our framework achieves robust performance (>80% succeed in apparently moving
forward), with particularly notable gains on unconventional morphologies such as the torus and
Enneper surface. This generality stems from our automated pipeline, which adapts naturally to
diverse geometries, and our novel internal actuation strategy based on rest shape deformation,
enabling the generation of expressive yet effective swimming motions.

Training Stability To address the stochastic nature of reinforcement learning, we evaluated the
training stability of our framework. We trained policies for a fish-like swimmer in 2D across six
independent runs with different random seeds while keeping all hyperparameters constant. The
learning process proved to be highly consistent, with all runs converging to a similar high level of
performance. The final mean normalized reward was 6.71 with a low standard deviation of 0.77. The
learning trajectories show a stable and monotonic increase in reward, confirming that our method is
robust and its performance is reproducible. Detailed learning curves and statistics at different training
milestones are provided in the supplementary material.

6.3 Detailed Analysis

Our method learns effective swimming strategies across diverse morphologies (Fig. 3), producing
biologically plausible motions for novel topologies. Several key observations are summarized below.
Please refer to our videos in the supplementary materials for their full motions.

Torus The torus-shaped swimmer achieves propulsion through a periodic deformation cycle,
dynamically balancing body-fluid momentum exchange (Fig. 3, a. left). First, the torus undergoes
controlled self-twisting into an 8-shaped configuration. Then it obtains angular momentum from fluid
and starts to rotate, generating vortex-induced forces for forward motion. In contrast, the clustering
baseline struggles to make a movement (Fig. 3, a. right).

Ennerper Surface Resembling a saddle-shaped skirt, the swimmer performs rhythmic stretch-
ing/relaxation cycles, creating a "dancing" motion that leverages pressure gradients across its curved
surface (Fig. 3, b. left). This emergent behavior achieves stable locomotion despite the morphology’s
negative Gaussian curvature. In contrast, the clustering baseline make slight deformation and can
hardly move (Fig. 3, b. right).
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Figure 3: Key frames of some swimmers’ motions: (a) torus (b) Enneper surface (c) clownfish (d)
jellyfish. Swimmers in (a) and (b) are compared with clustering baseline, while swimmers in (c)
and (d) are compared with domain-expert baseline. The structures of fluid field are visualized by
extracting the isosurface of q criterion of velocity field.

Eel/Clownfish The controllers produce traveling-wave body undulations (Fig. 3, c. left), qualita-
tively reproducing the canonical undulatory propulsion common to natural anguilliform (eel-like) and
carangiform (fish-like) locomotion (Fig. 3, c. right). Leveraging our realistic LBM fluid simulator,
the swimmers effectively harness vortex shedding from the tail for propulsion, closely aligning with
biological observations—an effect unattainable in simplified simulation environments (Ma et al.,
2021; Wang et al., 2023a).

Jellyfish For the jellyfish, the learned policy is based on pulsation-based propulsion, a canonical
swimming mode. However, instead of the synchronized bell contraction common in nature (Fig. 3, d.
right), our policy discovers a novel variant that propels fluid through alternating contractions along
two mutually orthogonal directions (Fig. 3, d. left). It is worth noting that this strategy achieves
higher speed than the domain-expert actuation design described above (Sec. 6.1).

6.4 Optimizing for Energetic Efficiency

Beyond maximizing travel distance, a key performance metric for both biological and robotic
swimmers is energetic efficiency. To demonstrate that our framework can optimize for such objectives,
we conducted an experiment to learn energy-efficient gaits. Following established biomechanics
literature, we define energy cost as the total work done by the internal forces to deform the swimmer’s
body. This physically-grounded metric is efficiently computed at each simulation step.

We augmented the reward function with an energy penalty term: Reff = Rtask − we · E, where E
is the energy cost and we is a tunable penalty coefficient. We trained policies for the clownfish
morphology with varying we and evaluated the trade-off between distance and efficiency using the
Cost of Transport (CoT), defined as total energy consumed per meter traveled (lower is better).

The results in Table 2 show a clear and predictable trade-off. As the energy penalty increases,
the learned gaits become more conservative, consuming significantly less energy and achieving a
better CoT. An excessively high penalty (we = 0.05) correctly suppresses movement almost entirely,
confirming that the policy robustly optimizes the combined objective. This demonstrates the flexibility
of our framework to incorporate and optimize for complex, physically-grounded objectives beyond
simple locomotion. The precise formulation for the energy cost is detailed in the supplementary
material.
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Table 2: Cost of Transport (CoT) and travel distance for different energy penalty weights (we).

we Forward Distance Energy Cost Cost of Transport (CoT)

0 (Baseline) 1.68 m 433.2 J 258.3 J/m
0.005 1.57 m 211.0 J 134.3 J/m
0.02 1.06 m 78.8 J 74.7 J/m (Optimal)
0.05 -0.01 m 0.3 J N/A

6.5 Ablation Studies

In this section, we conduct a series of ablation studies to analyze key components of our method,
including the effect of control point count on motion, the selection of geodesic distance in LBS
process, the choice of LBM for fluid simulation, and momentum conservation enabled by internal
actuators. Results show that:

1. Geodesic distance proves critical for capturing geometry-aware deformation modes com-
pared to Euler distance;

2. The number of control points may affect the magnitude and the complexity of the motion,
depending on the morphology;

3. Our LBM fluid solver captures hydrodynamic details for swimming where simplified fluid
model fails;

4. We ablate fluid interactions to show that our internal actuator does not introduce non-physical
momentum.

Details including figures and videos can be found in our supplementary materials.

7 Conclusions

This work presents a unified framework for learning to control free-form soft swimmers. By
combining a morphology-agnostic reduced control space with a high-fidelity GPU-accelerated
simulator, we automate controller design, bypassing the need for manual heuristics. Our approach
enables the emergence of bio-inspired gaits, generalizes to unconventional morphologies where prior
methods fail, and demonstrates versatility across diverse locomotion tasks.

While our framework advances automated control, several open challenges highlight important
directions for future research.

Morphology-Control Co-Design. We focused on learning control policies for fixed morphologies.
True co-design—the joint optimization of shape and control—remains a grand challenge, particularly
in high-fidelity 3D hydrodynamic environments. Existing platforms are often limited to 2D or use
simplified physics. Our work provides two critical components for tackling 3D co-design: a unified
control representation that can adapt to changing morphologies and a physically-grounded simulator
capable of evaluating them. Future work could integrate our framework with morphology generation
algorithms to explore the vast co-design space.

Sim-to-Real Transfer. Bridging the sim-to-real gap for soft, fluid-immersed robots is a formidable
challenge, complicated by manufacturing imprecision, material property identification, and complex
fluid dynamics. Our work provides a first step by establishing a robust simulation framework to
discover optimal control policies under idealized conditions. These policies can serve as a baseline
for future research focused on domain randomization, system identification, and other sim-to-real
techniques tailored to underwater robotics.

Universal Controllers. Our method learns a specialized policy for each morphology. A truly
universal controller that generalizes to unseen geometries remains an open problem for soft bodies,
whose high-dimensional, fluid-coupled dynamics are far more complex than those of rigid-body
systems. Addressing this will likely require breakthroughs in meta-learning and representation
learning under complex physical uncertainties.
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